142 Technical Notes

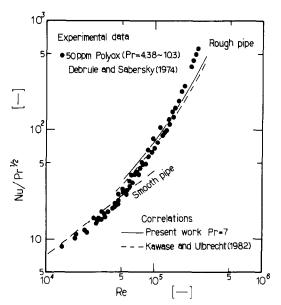


Fig. 2. Comparison of the present model with data for heat and mass transfer (dilute polymer solution under the maximum drag reduction condition).

representation of the heat and mass transfer processes in rough pipes. Unfortunately, more detailed discussion is hampered by the lack of experimental data for dilute polymer solutions and suitable parameters to describe the roughness. A more precise model based on the surface renewal concept must await a greater wealth of knowledge for the bursting phenomena in a rough pipe. Furthermore, it has been known that some of the scatter in the experimental data for dilute polymer solutions is due to degradation of the polymers and entrance effects [21, 22]. Therefore the experimental data carried out taking these effects into consideration is also required.

REFERENCES

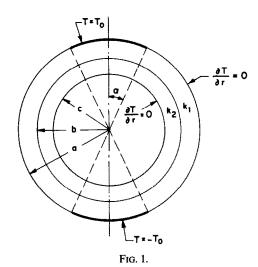
- D. F. Dipprey and R. H. Sabersky, Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers, Int. J. Heat Mass Transfer 6, 329-353 (1963).
- R. A. Gowen and J. W. Smith, Turbulent heat transfer from smooth and rough surfaces, *Int. J. Heat Mass Transfer* 11, 1657-1673 (1968).
- 3. R. L. Webb, E. R. G. Eckert and R. J. Goldstein, Heat transfer and friction in tubes with repeated-rib roughness, *Int. J. Heat Mass Transfer* 14, 601-617 (1971).
- 4. D. A. Dawson and O. Trass, Mass transfer at rough

- surfaces, Int. J. Heat Mass Transfer 15, 1317-1336 (1972).
- 5. A. P. Hatton and P. J. Walklate, A mixing-length method for predicting heat transfer in rough pipes, *Int. J. Heat Mass Transfer* 19, 1425-1431 (1976).
- P. M. Ligrani, W. M. Kays and R. J. Moffat, A heat transfer prediction method for turbulent boundary layers developing over rough surfaces with transpiration, *Int. J. Heat Mass Transfer* 24, 774-778 (1981).
- S. Sideman and W. V. Pinczewski, Turbulent heat and mass transfer at interfaces: transport models and mechanisms, in *Topics in Transport Phenomena* (edited by C. Gutfinger), Ch. 2. Wiley, Washington (1975).
- 8. G. A. Hughmark, Heat, mass, and momentum transport with turbulent flow in smooth and rough pipe, *A.I.Ch.E. Jl* **21**, 1033–1035 (1975).
- W. V. Pinczewski and S. Sideman, A model for mass (heat) transfer in turbulent tube flow. Moderate and high Schmidt (Prandtl) numbers, Chem. Engng Sci. 29, 1969– 1976 (1974).
- Y. Kawase and J. J. Ulbrecht, Turbulent heat and mass transfer in non-Newtonian pipe-flow: a model based on the surface renewal concept, *Physico-Chemical Hydrodynamics* (1983), in press.
- 11. T. J. Hanratty, Turbulent exchange of mass and momentum with a boundary, A.I.Ch.E. Jl 2, 359-362 (1956).
- H. A. Einstein and H. Li, The viscous sublayer along a smooth boundary, Trans. Am. Soc. Civ. Engrs 82, 293– 317 (1966).
- 13. G. A. Hughmark, Additional notes on transfer turbulent pipe flow, A.I.Ch.E. Jl 19, 1054-1055 (1973).
- Y. Kawase and J. J. Ulbrecht, A model of the bursting process in non-Newtonian fluids, J. Non-Newtonian Fluid Mech. (1984), in press.
- G. A. Hughmark, Heat and mass transfer for turbulent pipe flow, A.I.Ch.E. Jl 17, 902-909 (1971).
- 16. J. T. Davies, *Turbulence Phenomena*, p. 34. Academic Press, New York (1972).
- D. W. Savage and J. E. Myers, The effect of artificial surface roughness on heat and momentum transfer, A.I.Ch.E. Jl 9, 694-702 (1963).
- Y. Kawase and J. J. Ulbrecht, Turbulent heat and mass transfer in dilute polymer solutions, *Chem. Engng Sci.* 37, 1039–1046 (1982).
- 19. W. Nunner, Heat transfer and pressure drop in rough tubes, VDI ForschHft 455B(22), 5-39 (1956).
- P. M. Debrule and R. H. Sabersky, Heat transfer and friction coefficients in smooth and rough tubes with dilute polymer solutions, *Int. J. Heat Mass Transfer* 17, 529–540 (1974).
- 21. Y. Dimant and M. Poreh, Heat transfer in flows with drag reduction, Adv. Heat Transfer 12, 77-113 (1976).
- Y. I. Cho and J. P. Hartnett, Non-Newtonian fluids in circular pipe flow, Adv. Heat Transfer 15, 59-141 (1982).

Int. J. Heat Mass Transfer. Vol. 27, No. 1, pp. 142-144, 1984 Printed in Great Britain 0017 -9310/84 \$3.00 + 0.00 © 1984 Pergamon Press Ltd.

THE THERMAL RESISTANCE OF A COMPOSITE HOLLOW SPHERE

G. M. L. GLADWELL


Solid Mechanics Division, Department of Civil Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 16 December 1982 and in revised form 8 April 1983)

YOYANOVICH et al. [1] computed the thermal resistance of a hollow sphere subjected to an arbitrary polar flux. One of their aims was to determine the thermal resistance for isothermal polar regions. One of their assumed flux distributions did give an approximately uniform polar temperature distribution, at

least for a small polar angle α and for thick shells. In this note the isothermal problem is solved using an analysis developed by Collins [2].

Figure 1 shows a composite spherical shell composed of shells of external and internal radii (a, b) and (b, c), and thermal

conductivities k_1 and k_2 , respectively. The inner surface is insulated, the outer surface has caps at temperatures of $\pm T_0$ and its remaining surface is insulated. The static temperature distribution depends only on the spherical coordinates r, θ , and satisfies $\nabla^2 T = 0$. If

$$T \equiv T(r,\theta) = \begin{cases} T_1(r,\theta), & b < r \le a, \\ T_2(r,\theta), & c \le r < b, \end{cases}$$
 (1)

then the satisfaction of the boundary conditions

$$T_1(a,\theta) = T_0, \qquad 0 \le \theta < \alpha,$$
 (2)

$$T_1(a,\theta) = -T_0, \quad \pi - \alpha < \theta \le \pi,$$
 (3)

$$\frac{\partial T_1}{\partial r}(a,\theta) = 0, \quad \alpha < \theta < \pi - \alpha;$$

$$\frac{\partial T_2}{\partial r}(b,\theta) = 0. \tag{4}$$

$$T_1(b,\theta) = T_2(b,\theta), \tag{5}$$

$$k_1 \frac{\partial T_1}{\partial r}(b,\theta) = k_2 \frac{\partial T_2}{\partial r}(b,\theta),$$

leads to the following equations:

$$2\sum_{n=0}^{\infty} (1+H_n)C_n P_n(\cos\theta) = T_0, \qquad 0 \le \theta < \alpha, \tag{6}$$

$$\sum_{n=0}^{\infty} (2n+1)C_n P_n(\cos \theta) = 0, \qquad \alpha < \theta < \pi - \alpha, \qquad (7)$$

$$2\sum_{n=0}^{\infty} (1+H_n)C_n P_n(\cos\theta) = -T_0, \quad \pi-\alpha < \theta \leqslant \pi, \tag{8}$$

where $\kappa = k_2/k_1 = 1 + \sigma$, $\beta = b/a$, $\gamma = c/b$, $B = \beta^{2n+1}$, $C = \gamma^{2n+1}$ and n takes only 'odd' values

$$\sum_{n=0}^{\infty} (2n+1)A_n P_n(\cos \theta) = 0, \qquad \alpha < \theta \leqslant \tau, \qquad (11)$$

$$\sum_{n=0}^{\infty} (2n+1)B_n P_n(\cos \theta) = 0, \qquad 0 \leqslant \theta < \pi - \alpha,$$
(12)

$$2\sum_{n=0}^{\infty} (1 + H_n)(A_n + B_n)P_n(\cos \theta) = -T_0, \quad \pi - \alpha < \theta \le \pi.$$
(13)

Since C_n is zero for even values of n, then $A_{2n} = -B_{2n}$, $A_{2n+1} = B_{2n+1} = \frac{1}{2}C_{2n+1}$. In this way, equations (12) and (13) follow identically from equations (10) and (11) by putting $\theta = \pi - \phi$ and noting that $P_n(-x) = (-)^{n-1}P_n(x)$.

The Legendre polynomials satisfy the equation [3]

$$L(\phi, \theta) \equiv \sum_{k=0}^{\infty} \cos\left(k + \frac{1}{2}\right) \phi P_k(\cos \theta)$$

$$= \begin{cases} \left[2(\cos \phi - \cos \theta)\right]^{-1/2}, & 0 \le \phi < \theta < \pi, \\ 0, & 0 < \theta < \phi, \end{cases}$$
(14)

from which may be deduced

$$\int_0^{\phi} \frac{P_m(\cos\theta)\sin\theta \,d\theta}{\left[2(\cos\theta-\cos\theta)\right]^{1/2}} = \frac{2}{2m+1}\sin\left(m+\frac{1}{2}\right)\phi, \quad (15)$$

$$\int_{\phi}^{\pi} \frac{P_m(\cos \theta) \sin \theta \, d\theta}{[2(\cos \phi - \cos \theta)]^{1/2}} = \frac{2}{2m+1} \cos \left(m + \frac{1}{2}\right) \phi. \quad (16)$$

Introducing the two operators \mathcal{F}_1 and \mathcal{F}_2 defined by

$$\mathscr{T}_1[f(\theta); \theta \to \phi] = \int_0^\phi \frac{\sin \theta f(\theta) \, \mathrm{d}\theta}{[2(\cos \theta - \cos \phi)]^{1/2}}, \quad (17)$$

$$\mathscr{F}_{2}[f(\theta); \theta \to \phi] = \int_{\phi}^{\pi} \frac{\sin \theta f(\theta) d\theta}{\left[2(\cos \phi - \cos \theta)\right]^{1/2}}, \quad (18)$$

and operating on equations (10) and (11) by $(d/d\phi) \mathcal{F}_1$ and \mathcal{F}_2 , respectively, and using equations (15) and (16) gives

$$2\sum_{n=0}^{\infty} (1 + H_n)(A_n + B_n) \cos\left(n + \frac{1}{2}\right) \phi = T_0 \cos\frac{\phi}{2},$$

$$0 \le \phi < \alpha$$
, (19)

$$\sum_{n=0}^{\infty} A_n \cos\left(n + \frac{1}{2}\right) \phi = 0, \quad \alpha < \phi < \pi.$$
 (20)

The following function is now introduced

$$j(\phi) = \sum_{n=0}^{\infty} A_n \cos\left(n + \frac{1}{2}\right)\phi, \tag{21}$$

so that equation (20) states that $j(\phi) = 0, \alpha < \phi \le \pi$. One may consider $j(\phi)$ to be an 'even' function defined in $[-\pi, \pi]$; it is non-zero only in $(-\alpha, \alpha)$. Equation (21) gives

$$A_n = \frac{2}{\pi} \int_0^{\pi} j(\phi) \cos\left(n + \frac{1}{2}\right) \phi \, d\phi. \tag{22}$$

$$2H_n = \frac{(1/n) + [(4n+3)/(n+1)]BC + [\sigma(1-C)/(2n+1)][1 - (4n+3)B]}{1 - BC + [\sigma(1-C)/(2n+1)][n + (n+1)B]}.$$
(9)

These are examples of the 'even' case of equations of the second kind considered by Collins [2]. A simplified version of his reduction of the problem to an integral equation is presented below.

In equations (6)–(8), $C_n = A_n + B_n$, where n = 0, 1, 2, ..., and A_n and B_n are chosen to satisfy

$$2\sum_{n=0}^{\infty} (1+H_n)(A_n+B_n)P_n(\cos\theta) = T_0, \qquad 0 \le \theta < \alpha, \qquad (10)$$

If this is substituted into equation (19), and using $B_n = (-)^{n-1}A_n$ one obtains

$$j(\phi) - \frac{1}{\pi} \int_{-\alpha}^{\alpha} \left\{ \frac{1}{2 \cos \frac{1}{2}(\theta - \phi)} - M(\theta - \phi) \right\} j(\theta) d\theta$$
$$= \frac{T_0}{2} \cos \frac{\phi}{2}, \quad -\alpha < \phi < \alpha, \quad (23)$$

144 Technical Notes

where

$$M(\theta - \phi) = 2 \sum_{n=0}^{\infty} H_{2n+1} \cos\left(2n + \frac{3}{2}\right) (\theta - \phi).$$
 (24)

The thermal resistance R is defined by $QR = 2T_0$, where Q is the total heat flux, i.e.

$$Q = 2\pi a k_1 \int_0^{\pi} \sum_{n=0}^{\infty} (4n+3) C_{2n+1} P_{2n+1}(\cos \theta) \sin \theta \ d\theta.$$
 (25)

This may be expressed in terms of $j(\phi)$ in the form

$$Q = 8ak_1 \int_0^a j(\phi) \cos \frac{\phi}{2} d\phi, \qquad (26)$$

and the dimensionless resistance used in ref. [1] is

$$R^* = k_1(a \sin \alpha)R = \frac{T_0 \sin \alpha}{4 \int_0^{\alpha} j(\phi) \cos \frac{\phi}{2} d\phi}.$$
 (27)

One notes that, in the limit $\alpha \to 0$, $j(\phi) = T_0/2$ so that $R^* \to \frac{1}{2}$, in agreement with ref. [1].

The only difficulty encountered in the numerical solution of equation (24) occurred in the evaluation of the kernel $M(\theta - \phi)$. Equations (9) and (25) may be rewritten $2H_n = (1/n) + 2H_n^*$ and

$$M(\theta) = -\frac{1}{2}\cos(\theta/2)\ln\left|\tan(\theta/2)\right| - \frac{\pi}{4}\left|\sin(\theta/2)\right| + 2\sum_{n=1}^{\infty} H_{2n+1}^{*}\cos[(4n+3)\theta/2], \quad (28)$$

where

 $2H_{n}^{*} =$

$$\frac{[(4n+3)/(n+1)+(1/n)]B\{C-\sigma(1-C)[(n+1)/(2n+1)]\}}{1-BC+[\sigma(1-C)/(2n+1)][n+(n+1)B]},$$
(29)

and B, C are defined after equation (8).

Equation (24) was solved by putting $\theta = \alpha x$, $\phi = \alpha y$, $j(\theta) = g(x)$, and assuming an expansion for g(x) of the form

$$g(x) = \sum_{n=0}^{N} a_n T_n(x), \quad n = \text{even.}$$
 (30)

The contribution of the logarithmic in $M(\theta - \phi)$ singularity was calculated by using

$$\int_{-1}^{1} \ln \left\{ 2|x-y| \right\} T_m(x) \, \mathrm{d}x = \sum_{n=2}^{\infty} b_{m,n} T_n(y), \quad m, n = \text{even},$$
(31)

where

$$b_{m,n} = \frac{1}{2} \left[\frac{1}{n+m+1} - \frac{1}{m+n-1} + \frac{1}{m-n+1} - \frac{1}{m-n-1} \right]. \tag{32}$$

In the single shell case $(\sigma = 0)$ it was found that for $0 \le \alpha \le 5^{\circ}$ and $0 \le \beta \le 0.99$, g(x) could be approximated adequately by taking $N \le 4$ in equation (32). Table 1 shows the dimensionless thermal resistance, to the number of significant figures that were obtained with confidence, i.e. that were reproduced when N in equation (32) was increased. The

Table 1. Dimensionless thermal resistance. The lower values are the approximate results of Yoyanovich et al. [1]

	The second of th	*****		
	α			
β	0.05	0.10	1.00	5.00
0.0	0.50103	0.50187	0.51228	0.53825
	0.5001	0.5016	0.5127	0.5405
0.2	0.50104	0.50189	0.51248	0.53925
	0.5001	0.5016	0.5129	0.5415
0.4	0.50112	0.50205	0.51403	0.54693
	0.5002	0.5017	0.5144	0.5492
0.6	0.50141	0.50263	0.51991	0.57606
	0.5005	0.5023	0.5203	0.5784
0.8	0.50282	0.50544	0.54799	0.71291
	0.5019	0.5051	0.5484	0.7157
0.9	0.50671	0.51323	0.62561	1.0754
	0.5058	0.5129	0.6260	1.0813
0.92	0.50897	0.51775	0.67054	1.2761
	0.5081	0.5174	0.6710	1.2842
0.94	0.51305	0.52591	0.75130	1.624
	0.5121	0.5256	0.7519	1.6364
0.96	0.52205	0.54391	0.92806	2.35
	0.5211	0.5436	0.9290	2.3662
0.98	0.55306	0.60597	1.522	4.59
	0.5522	0.6056	1.5248	4.6171
0.99	0.62481	0.7494	2.827	9.2
	0.6241	0.7491	2.8204	9.1720

values obtained by Yoyanovich et al. [1] from the heat flux $q = q_0(\cos \theta - \cos \alpha)^{-12}$, are shown for comparison. It is clear that this approximate heat flux generally gives reliable results.

CONCLUSIONS

It has been shown that the problem of a spherical shell with isothermal polar caps may be formulated as a singular integral equation which may be solved by using a simple series expansion. The results show that the flux distribution used by Yoyanovich et al. [1] is adequate for a wide range of problem parameters.

REFERENCES

- M. M. Yoyanovich, G. E. Schneider and C. H. Tien, Thermal resistance of hollow spheres subjected to an arbitrary flux over their poles, in *Progress in Aeronautics* and Astronautics, Thermophysics and Thermal Control (edited by R. Viskanta), Vol. 65, pp. 120-134. AIAA (1978).
- W. D. Collins, On some triple series equations and their applications, Archs Ration. Mech. Analysis 11, 122-137 (1962)
- I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, p. 1029. Academic Press, New York (1965).
- 4. D. A. Elliott, An algorithm for the numerical solution of linear integral equations, *I.C.C. Bull.* 6, 207-224 (1967).
- G. Ia. Popov, On integral equations of the theory of elasticity with difference and summation kernels, J. Appl. Math. Mech. 34, 575-590 (1970).